Galassia Nano-Satellite

National University of Singapore

Satellite and Airborne Radar Systems Laboratory

Project Lead Supervisor: Dr. Luo Sha
Systems Engineer: Eugene Ee Wei Han

Presented by: Prof Goh Cher Hiang
@ 2nd Singapore Space Symposium 30 Sep 2015
Outline

- Missions Objectives
- Satellite Orbit
- System Overview
- Assembly, Integration & Test
- Schedule
Mission Objectives

➢ To acquire **Total Electron Count (TEC) data in the ionosphere above Singapore.**

\[I = \int_0^R N \, ds \]

Where,

\[N = 5.97 \times 10^5 \times \frac{f_c^3}{f_m^2} \Delta \Phi \] (Electron Density)

- \(R \) is the vertical path between cubesat and ground station
- \(f_c \) and \(f_m \) are the carrier and modulation frequencies
- \(\Delta \Phi \) is the phase difference between of signals at ground station after mixing
Mission Objectives (cont’d)

➢ To acquire quantum correlation data in space for the concept verification of quantum-based communication by NUS Centre for Quantum Technologies (CQT). Its principle is based on Small Photon-Entangling Quantum Systems (SPEQS).

SPEQS Payload (EM Version)
Satellite Orbit

- **Galassia Orbital Parameters:**
 - **Near Equatorial Orbit**
 - **Altitude:** 550km
 - **Inclination:** 15 degrees
 - **Eccentricity:** <0.0003
 - **Average no. of access a day:** 8
 - **Longest access time:** 415.281 sec

- **Launch is based on piggyback opportunity on PSLV-C29**
System Overview (Requirements)

System Specifications

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus</td>
<td>2U Cubesat</td>
</tr>
<tr>
<td>Dimension (mm)</td>
<td>100 x 100 x 200</td>
</tr>
<tr>
<td>Mass (kg)</td>
<td>2</td>
</tr>
<tr>
<td>Communication</td>
<td>UHF (436.4 MHz)</td>
</tr>
<tr>
<td>Power (W)</td>
<td>Max Consumption: 2</td>
</tr>
<tr>
<td>Battery</td>
<td>20 Whr (Li-Ion)</td>
</tr>
<tr>
<td>Solar Panels</td>
<td>GaAs Cells</td>
</tr>
<tr>
<td>Flight Computer</td>
<td>ARM 7</td>
</tr>
<tr>
<td>Attitude Control</td>
<td>Passive: Permanent Magnet & Hysteresis Rods</td>
</tr>
<tr>
<td>Orbit Altitude</td>
<td>550 km, 15 deg Inclination Equatorial Orbit</td>
</tr>
</tbody>
</table>
System Overview (Configuration)

- ISIS Deployable Antenna
- Payload 1: TEC
- Payload 2: SPEQS Quantum Communication Payload
- Interstage Panel
- Nanohub
- Telemetry, Tracking & Command Subsystem (TT&C)
- Passive ADCS (Hysteresis Rods)
- Secondary Payload: ADCS-EP
- Electrical Power Subsystem (EPS)
- On Board Computer (OBC)
- Passive ADCS (Magnets)
- TT&C Deployable Antenna (Stowed)
Assembly, Integration & Test

- A Two-Model Philosophy is used:
 - Engineering Model ("FlatSat")
 - Flight Model (FM)
2015 Galassia Assembly Flow
• **Test Levels**

 • *Test done at Protoflight Model Levels (i.e. Qualification Level at Acceptance Duration)*

• **Tests Campaign (29th July – 09th Sept 2015)**
AIT (Facilities & Tests Planned)

• Flight Model Testing
 • Done at ST Satellite Systems
 • Shaker & Thermal Vacuum Chamber Class 100K cleanroom

• Tests Conducted
 • Vibration Test
 i. Sinusoidal Vibration
 ii. Random Vibration
 • Thermal Vacuum Test
Galassia in PPOD with mounted accelerometers on Shaker Table
AIT (Vibration Test Results)

- **Sinusoidal**
- **Measurement locations**

Mounting of Accelerometers for Vibration Tests

Sinusoidal Vibration Test Profile

Back Rail Measurement
AIT (Random Vibration Results)

- **Chan.no:** 3
- **Chan.type:** N
- **DOF:** 90
- **Level:** 0.0 dB
- **Resolution:** 5 Hz
- **Contr.strat.:** Average
- **Unit:** g²/Hz
- **RMS (act.):** 23.54 g
- **RMS (req.):** 6.705 g
- **Contr.strat.:** Closed loop

Measurement

- **Input**

Back Rail

- **[g²/Hz]**
 - 20 Hz: 0.0020 g²/Hz

[Hz]

[g²/Hz]

[Hz]

C:\\VopNT\Daten\mp\NUS RANDOM_30 JULY 2015-VERTICAL_023.rmn
AIT (Shock Test Results, Z-axis)
AIT (Thermal Vacuum Test)

- **TVC Facility**

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start Cycle</td>
<td>Hot</td>
</tr>
<tr>
<td>Ambient Temperature</td>
<td>25 °C</td>
</tr>
<tr>
<td>Vacuum Pressure</td>
<td>10^{-5} Torr</td>
</tr>
<tr>
<td>No. of Cycles</td>
<td>2</td>
</tr>
<tr>
<td>Dwell Time</td>
<td>1 hour cold soak</td>
</tr>
<tr>
<td></td>
<td>1 hour hot soak</td>
</tr>
<tr>
<td>Temperature Ramp</td>
<td>1 °C/min</td>
</tr>
<tr>
<td>Range</td>
<td>-15 °C to +35 °C</td>
</tr>
</tbody>
</table>

Galassia in Thermal Vacuum Chamber
AIT (TVC Test Results)

Thermal Vacuum Test Profile

- **Chamber’s pressure**
- **Jig/Base temperature**
- **Galassia temperatures**
Schedule (Latest)

<table>
<thead>
<tr>
<th>Important Milestones</th>
<th>Planned Date</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Kickoff</td>
<td>16 Aug 2013</td>
<td>Completed</td>
</tr>
<tr>
<td>Preliminary Design Review (PDR)</td>
<td>20 Sep 2013</td>
<td>Completed</td>
</tr>
<tr>
<td>Critical Design Review (CDR)</td>
<td>8 May 2014</td>
<td>Completed</td>
</tr>
<tr>
<td>Assembly Integration Test (AIT)</td>
<td>Jan to Sept 2015</td>
<td>Completed</td>
</tr>
<tr>
<td>Flight Readiness Review (FRR)</td>
<td>3<sup>rd</sup> Week Oct 2015</td>
<td></td>
</tr>
<tr>
<td>Shipment to Launch Site (Sriharikota)</td>
<td>Mid to End Oct 2015 (TBD)</td>
<td></td>
</tr>
<tr>
<td>Launch</td>
<td>Nov/Dec 2015</td>
<td></td>
</tr>
</tbody>
</table>
Thank You